
Top down evolutionary electronics

The “crystallisation” method

Cherry George Mathew

Submitted for the degree of MSc.

University of Sussex

September 2007

ii

Declaration

I hereby declare that this thesis, either in the same or different form, has not been previously

submitted to this or any other University for a degree.

Signature:

Cherry George Mathew

iii

UNIVERSITY OF SUSSEX

CHERRY GEORGE MATHEW, MSC.

TOP DOWN EVOLUTIONARY ELECTRONICS

THE “CRYSTALLISATION” METHOD

SUMMARY

This dissertation involves the application of evolutionary techniques to the design of analog elec-

tronic filter circuits. A novel new method of tackling complex analog filter design is investigated.

It is compared with a standard method used in extrinsic evolutionary electronics for efficiency

and scalability. The objective of the project is to demonstrate feasibiliy of the evolutionary method

used. It is envisioned that this method can be applied to more complex circuit design problems,

and perhaps in domains other than analog frequency filters.

iv

Acknowledgements

Thanks everyone.

v

Contents

Contents v

1 Introduction 1

2 Background and Motivation 2

3 Methodology 3

3.1 Approach . 3

3.1.1 Topology . 3

3.1.2 Circuit Elements . 3

4 Implementation 5

4.1 The Genetic Algorithm - Microbial GA . 5

4.2 Gene encoding . 5

4.3 The netlist generator . 6

4.4 The SPICE simulator driver . 6

4.5 The fitness function . 6

4.5.1 Transfer function correlation . 7

4.5.2 Unitor properties . 7

4.5.3 Parsimony . 7

4.6 Benchmarking . 8

5 Results 9

6 Discussion and further work 38

7 Conclusion 39

Bibliography 40

A Code 41

vi

List of Tables

vii

List of Figures

5.1 Average Fitness plot: Unitor, Nodes = 7 . 10

5.2 Max Fitness plot: Unitor, Nodes = 7 . 11

5.3 Average Fitness plot: RLC, Nodes = 7 . 12

5.4 Max Fitness plot: RLC, Nodes = 7 . 13

5.5 Average Fitness plot: Unitor, Nodes = 8 . 14

5.6 Max Fitness plot: Unitor, Nodes = 8 . 15

5.7 Average Fitness plot: RLC, Nodes = 8 . 16

5.8 Max Fitness plot: RLC, Nodes = 8 . 17

5.9 Average Fitness plot: Unitor, Nodes = 9 . 18

5.10 Max Fitness plot: Unitor, Nodes = 9 . 19

5.11 Average Fitness plot: RLC, Nodes = 9 . 20

5.12 Max Fitness plot: RLC, Nodes = 9 . 21

5.13 Average Fitness plot: Unitor, Nodes = 10 . 22

5.14 Max Fitness plot: Unitor, Nodes = 10 . 23

5.15 Average Fitness plot: RLC, Nodes = 10 . 24

5.16 Max Fitness plot: RLC, Nodes = 10 . 25

5.17 Average Fitness plot: Unitor, Nodes = 11 . 26

5.18 Max Fitness plot: Unitor, Nodes = 11 . 27

5.19 Average Fitness plot: RLC, Nodes = 11 . 28

5.20 Max Fitness plot: RLC, Nodes = 11 . 29

5.21 Average Fitness plot: Unitor, Nodes = 12 . 30

5.22 Max Fitness plot: Unitor, Nodes = 12 . 31

5.23 Average Fitness plot: RLC, Nodes = 12 . 32

5.24 Max Fitness plot: RLC, Nodes = 12 . 33

5.25 Average Fitness plot: Unitor, Nodes = 13 . 34

5.26 Max Fitness plot: Unitor, Nodes = 13 . 35

5.27 Average Fitness plot: RLC, Nodes = 13 . 36

5.28 Max Fitness plot: RLC, Nodes = 13 . 37

1

Chapter 1

Introduction

Sewall Wright introduced the idea of a fitness landscape to express the relationship between geno-

type, phenotype and viability, in what would later be known as the field of theoretical population

genetics. [wright,1932]. Borrowing from these ideas, the field of Evolutionary electronics has at-

tempted to pose the problem of circuit design as one of search along a suitable fitness landscape.

If the topology and component specifications of a circuit can be arranged to be the phenotypic ex-

pression of a string of coding genes, then an evolutionary algorithm need only search for circuits

which behave in increasingly conformant fashion, in order to meet a required design goal.

There are two methods to search for conformance to a desired specification. The first in-

volves actual realisation of each physical circuit phenotype in hardware, followed by testing its

behaviour for conformance. Modern programmable hardware such as FPGAs and FPTAs make

this method feasible and extremely fast. The main caveat, or advantage of this method, depend-

ing on one’s point of view, is that the evolutionary method tends to use the physics of the given

hardware and the environment at the time of evolution in unforeseen ways, bringing novel, but

usually unreproducible designs (Thompson, 1997). The second method involves the use of simu-

lators to realise circuit behaviour. With the obvious disadvantage of lack of speed and emulator

approximation, comes the advantage of being able to reproduce results eg: (Koza et al., 1997).

This project uses the circuit emulator SPICE, in order to evaluate candidate circuits.

From a circuit design perspective, the main challenge facing evolutionary electronic design has

been the design of increasingly complex circuits. Various methods of constraining evolutionary

pathways have been proposed to allow for realistic design times, given limited computational

resources. eg: [kozagp3], (Kalganova, 2000; Torresen, 2002)

This project approaches the problem in a top-down fashion. By starting with a circuit mesh

connected in all possible ways and circuit elements which have an amalgam of properties of

individual elements, it is expected that the evolutionary fitness landscape is smoothened. The

topology is discovered by disconnecting initially connected nodes as required (ie; introducing

parsimony), and circuit elements of required specification are arrived at by progressively weak-

ening the contribution of the properties of all but the desired circuit element. This approach can

be thought of as analogous to crystallisation of minerals from a saturated solution, where the

electrostatic bonds between the mineral molecules are constrained to the physical bounds of the

geometry.

As an illustrative project, only circuits with passive two port elements are used for crystalli-

sation. Arbitrary target frequency filter patterns are specified as evolutionary goals to the setup.

Results are analysed and compared to a naive approach of having all components inter-connected

at the start of the run, but with standard two port circuit elements in place.

2

Chapter 2

Background and Motivation

Evolutionary Electronics has been investigated by many people over the years. John Koza has

demonstrated industrial strength circuit designs and even innovative new designs by Genetic Pro-

gramming methods (Koza et al., 2004) and predicts the success of these techniques as computing

power increases. Zebulum surveys various approaches to evolutionary electronics (Zebulum et al.,

1998) and discusses issues specific to the problem of analog filter design. Mentioned in this sur-

vey are work by Grimbleby [grimbleby95] which involves the discovery of the circuit topology

by an Evolutionary Algorithm, and the circuit component values, by numeric optimisation; Hor-

rocks and Spittle[horrocksspittle96]: and Horrocks and Khalifa[horrockskhalifa96]: whose work

involves active filters and choosing ”preferred values ”, taking into account parasitic effects. Ze-

bulum addresses a third issue, namely the need to seek for parsimonious solutions in the face of

increasing circuit complexity. The analogous approach in the Genetic Programming approach is

pointed out to be to ”control the depth size of the trees”, referring to the acyclic graphs represent-

ing GP -¿ circuit mappings. In the GA approach of Zebulum, circuit complexity is increased by

allowing for gene strings to increase in length, and using the SAGA approach (Harvey, 2001) to

search along ”neutral ridges” for higher complexity.

In this work we focus on approaching the problem the other way round. Instead of trying to

increase complexity, we start with a complexity with an upper limit, and work ourselves down-

wards to less complex solutions, whilst enforcing parsimony in phenotype in a special manner

dubbed ”crystallisation” and referred to as such henceforth in this document.

3

Chapter 3

Methodology

3.1 Approach

The two main aspects of any circuit design are the topology of the network of interconnected

devices, and the values of the component devices themselves.

3.1.1 Topology

Given a completely interconnectable mesh of components, potentially all possible topologies are

available as a superset of the required circuit topology (or set of viable circuit topologies). We

focus on the problem of passive frequency filter design. Consequently, we consider only two port

devices, specifically resistors, capacitors and inductors. There is no reason why this cannot be

extendable to active three port devices applied to the same problem, or even other circuit design

problems. The current design problem is only picked as a relatively simpler illustrative example

of the approach.

Having started with a configuration in which devices are connected in every possible per-

mutation, the evolutionary algorithm searches for two parameters: functional correlation and

parsimony.

Function Correlation

A target function is defined, which has a pre-defined frequency response. The frequency response

of every candidate circuit is assessed by running it through the SPICE [berkeleyspice] simulator

and correlating the sampled frequencyresponse returned by the simulator with the target func-

tion. The higher the correlation, the better the circuit behaves according to our specification, and

therefore is deemed fitter.

Parsimony

Eventually, we intend that the final circuit uses the minimum possible number of components

in the most efficient manner as possible. In order to encourage this, we award higher fitness to

circuit topologies with fewer elements.

3.1.2 Circuit Elements

Individual elements are picked from a set of ”preferred values”. The actual values in the current

work are arbitrary and only meant to reflect a wide range of values. They do not represent prac-

4

tically realisable values or fabrication limitations. A virtual circuit element dubbed a ”unitor” is

defined. This is the key to the ”crystallisation” method. The unitor is an amalgam of a resistor in

series with a capacitor and an inductor in parallel ??. One of the key objectives of the evolution-

ary algorithm is to ”crystallise” the unitor into a single real circuit element. Table ?? shows the

configurations in which this may be accomplished. As an illustration, consider a unitor which is

aiming to be a resistor. The easiest way to do this is to short circuit the inductor OR the capacitor

elements within the unitor. This condition is recognised within the code and specially handled

so that the unitor is now defined exclusively as a Resistor. A fitness method is applied to every

individual unitor encouraging it to transit to a single device element. This is done by returning

highest fitness for unitors which consist of single realisable devices, intermediate fitness for two

element unitors, and lowest fitness for unitors which still have all three elements in them. This fit-

ness aspect is accumulated over all the unitors of the entire circuit and contributes to the increase

parsimony (decrease in total device count) in the final circuit.

5

Chapter 4

Implementation

The implementation can be described best by breaking it down into areas of functional impleme-

nation namely: the Genetic Algorithm, Gene encoding, the netlist generator, the spice simulator

driver, and the fitness function; each of which are explained in some detail below.

4.1 The Genetic Algorithm - Microbial GA

The Genetic Algorithm used here is the microbial GA (Harvey, 1996). Although a detailed analy-

sis of this algorithm is out of the scope of this dissertation, a brief description of this algorithm is

in order.

The microbial GA may be regarded as a steady state, rank-based tournament selection algo-

rithm with ”horizontal” gene exchange. The key to selection is that in a tournament, elitism is

preserved by ensuring that tournaments always leave winners with highest fitness in the current

population intact. Cross-over and mutation occur during each tournament with fixed proba-

bilites, and the loser is eliminated from the population thus providing automatic selection bias

towards fitter individuals. A ”generation” in the conventional sense consists of a set of tourna-

ments equal to the population size of the GA.

4.2 Gene encoding

The gene encoding used in the implementation is very simple. A genestring of fixed length is

defined. Genes coding for a given phenotype (a node, a resistor, capacitor or inductor) can be of

arbitrary size as required to represent all phenotypic ranges. The nucleotide coding equivalent is

binary, represented by single bits, as in standard Genetic algorithms (Goldberg, 1989).

The position of the gene along the genestring defines the phenotype it represents. In our im-

plementation, the first gene represents the circuit node chosen as the output node. The length of

this gene depends on the number of bits required to represent the highest node number. Subse-

quent genes represent unitors in increasing sorted order of the permutation of their connecting

nodes. Eg: A unitor connected to node 2 and 3, U23, is coded on the genestring before U34. U21

comes before U23.

XXX: figure with gene representation.

Each Unitor is encoded as a bit array of six nibbles 1. Each pair of nibbles represents a com-

ponent specification followed by its importance, termed ”device bias” in the unitor. Three such

1a nibble is 4 bits

6

pairs represent resistance, capacitance and inductance respectively.

XXX: figure for gene representation of each unitor.

The value of each component specifier nibble is an index into a lookup table from where the

netlist generator code fetches the actual value of the specification of the device to be used. The

nibble representing device bias has no direct effect on the phenotype (ie; the final circuit netlist),

but is very important for the crystallisation method (see below.)

Finally, every gene is decoded through a Gray to binary decoder to ensure smoother hamming

distances between mutations (Goldberg, 1989). However, the extent to which this has affected this

particular problem has not been investigated.

4.3 The netlist generator

This is the core of the simulator, and can be viewed as the ”morphogenerator” for the genes.

The netlist generator parses a given gene string, and writes out a file containing a SPICE [berke-

leyspice] netlist corresponding to it. This netlist is then run through the ngspice [ngspice] simula-

tor and analysed. The ngspice simulator runs a frequency domain analysis of the given network,

obtaining the transfer function as a relationship between the input frequency and the output

Voltage (complex values). The netlist generator arranges for this information to be extracted at

discrete sample points over the frequency domain by means of the SPICE .PRINT command.

For every individual netlist produced, this procedure is carried out, followed by a fitness

evaluation. Every netlist generation involves an iterative loop of all possible combinations of

node pairs to which unitors are attached. Each unitor is generated by reading off and decoding

its corresponding genome, and generating a .SUBCKT SPICE routine with the unitor components

inside. The code which does this is intelligent enough to detect when the unitor should be a short

or open circuit. As required, it will either short circuit, or entirely skip the synthesis of the unitor

for a given node pair. The parsimony fitness aspect is zero for a short circuit, and maximum for

an open circuit, with intermediate values assigned, as described below.

Finally, every unique individual is timestamped and written out to disk before simulation in

SPICE. This allows for the SPICE simulator driver to work independantly (but not parallelly) of

the GA setup, while at the same time preserving the individual circuit for subsequent inspection.

Although wastefull of disk space, this is easier than saving individual gene strings and subse-

quently regenerating the netlist as required.

4.4 The SPICE simulator driver

Although the details of its implementation are unimportant, it is worth mentioning that the sim-

ulator driver uses the unix fork(3) and exec(3) calls to invoke the ngspice simulator with the

appropriate netlist. The simulator results are then accumulated, fed into suitable data structures,

and fed back to the calling routine to pass on to the fitness evaluation routine.

4.5 The fitness function

The fitness function is the crucial element of any genetic algorithm. Given that the fitness function

reduces multiple fitness criteria into a single, scalar fitness landscape, it is crucial to design the

fitness function carefully. Ideally, a carefully designed fitness function would have gentle (non-

7

rugged) landscapes with provision for neutral ridges and few local minima. This would enable

the GA to converge smoothly to the ideal solution we seek.

There are three broad fitness criteria in unitor based circuits: The transfer function target cor-

relation, the proximity of the component unitors to a single device, and general parsimony of

component devices.

The fitness function combines these three aspects into a single scalar value which the evolu-

tionary algorithm then seeks to maximise. The base correlation fitness is first calculated and then

altered by the parsimony fitness. Variations of this theme have been tried with limited results.

4.5.1 Transfer function correlation

The objective of the GA is to find a circuit which can produce a frequency response as close

to a specified target frequency response as physically possible, by choosing from the available

component mix. The correlation is acheived based on previous work. (Zebulum et al., 1998)

XXX: Equation: fitness = SUMOF(weight[i] * abs(target[i] - output[i]))

An array of weights and targets is initialised beforehand based on estimation of the required

target response. The weights are assigned such that they are much lower value in the signal reject

frequency ranges than they are in the signal pass frequency range. The exact ratio depends on

the number of target sample points and the nature of the target signal. We have used the same

weights for lowpass and highpass filters for all frequencies, while for bandpass and bandreject

targets we use weights 1/32 times that in the bandpass region. As the Q-factor of bandpass/reject

filters increases, it is best to increase the weight ratio, however if the ratio is too high, the band

reject areas tend to fall out of line, since their deviation from the target is then not checked with

sufficient penalty.

4.5.2 Unitor properties

The fitness awarded to each individual unitor fits on a 0 - 100 scale. Associated with every unitor

is a set of three values indicating its proximity to becoming an individual device, already dubbed

”device bias”. As mentioned above, these values are completely free running and bear no corre-

lation to the actual specification of the component devices that make up a unitor. They however

directly affect the fitness of the unitor. Two special cases occur when these values actually af-

fect the specification of the component devices. At 0 and 15 respectively (corresponding to the

lowest and highest values respectively encodable in a nibble), the values indicate to the netlist

generator that the device is either a short-circuit, or to be open-circuited (ie; not generated). This

correlates directly with the parsimony fitness requirement (see below) that fewer components are

encouraged over lots of short circuited nodes.

Every unitor also has three separate gene encoded values (see 4.2) to indicate the physical

values that each component device takes up. This is realised in the actual netlist and directly

affects the transfer function of the entire circuit, as explained above.

4.5.3 Parsimony

The overall fitness of the circuit is arranged to improve as the number of open circuited nodes

increases. However, this needs to be balanced carefully with the correlation fitness, as unbounded

opening of circuits leads to non-functional circuits.

8

4.6 Benchmarking

The results obtained with this method are meaningless without a suitable comparison with a

standard technique. A simple alternative circuit simulation is setup for this purpose. The code is

arranged such that all but the most essential code is shared from the same source files. This as-

sures a level of confidence in the results. The alternative arrangement involves the simplification

of the unitor netlist generator. Instead of three devices and associated device bias, we encode a

single gene of 6 bits for a single device. The lookup tables from which the devices are chosen are

a union of those used for the unitor. The algorithm can recognise the type of device (resistor vs.

capacitor vs. inductor) based on the index depth. Since 6 bits can represent upto 2
6 indices and

the LUT has fewer entries than this, the extra information is uniformly distributed in the index

range by scaling the decoded gene value with the maximum required index. This ensures that

rollover does not favour a certain type of device as would be the case with division or modulo

operation.

The arrangement in this simulator setup is referred to henceforth as the ”naive” method.

9

Chapter 5

Results

1
0

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 7, multiple band pass) - avg fitness

F
ig

u
re

5
.1

:
A

v
era

g
e

F
itn

ess
o

f
th

e
p

o
p

u
la

tio
n

:
U

n
ito

r,
N

o
d

es
=

7

1
1

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 7, multiple band pass) - max fitness

F
ig

u
re

5
.2

:
F

itn
ess

o
f

in
d

iv
id

u
a

l
w

ith
m

a
x

im
u

m
fi

tn
ess

in
th

e
p

o
p

u
la

tio
n

:
U

n
ito

r,
N

o
d

es
=

7

1
2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 7, multiple band pass) - avg fitness

F
ig

u
re

5
.3

:
A

v
era

g
e

F
itn

ess
o

f
th

e
p

o
p

u
la

tio
n

:
R

L
C

,N
o

d
es

=
7

1
3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 7, multiple band pass) - max fitness

F
ig

u
re

5
.4

:
F

itn
ess

o
f

in
d

iv
id

u
a

l
w

ith
m

a
x

im
u

m
fi

tn
ess

in
th

e
p

o
p

u
la

tio
n

:
R

L
C

,N
o

d
es

=
7

1
4

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 8, multiple band pass) - avg fitness

F
ig

u
re

5
.5

:
A

v
era

g
e

F
itn

ess
o

f
th

e
p

o
p

u
la

tio
n

:
U

n
ito

r,
N

o
d

es
=

8

1
5

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 8, multiple band pass) - max fitness

F
ig

u
re

5
.6

:
F

itn
ess

o
f

in
d

iv
id

u
a

l
w

ith
m

a
x

im
u

m
fi

tn
ess

in
th

e
p

o
p

u
la

tio
n

:
U

n
ito

r,
N

o
d

es
=

8

1
6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 8, multiple band pass) - avg fitness

F
ig

u
re

5
.7

:
A

v
era

g
e

F
itn

ess
o

f
th

e
p

o
p

u
la

tio
n

:
R

L
C

,N
o

d
es

=
8

1
7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 8, multiple band pass) - max fitness

F
ig

u
re

5
.8

:
F

itn
ess

o
f

in
d

iv
id

u
a

l
w

ith
m

a
x

im
u

m
fi

tn
ess

in
th

e
p

o
p

u
la

tio
n

:
R

L
C

,N
o

d
es

=
8

1
8

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 9, multiple band pass) - avg fitness

F
ig

u
re

5
.9

:
A

v
era

g
e

F
itn

ess
o

f
th

e
p

o
p

u
la

tio
n

:
U

n
ito

r,
N

o
d

es
=

9

1
9

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 9, multiple band pass) - max fitness

F
ig

u
re

5
.1

0
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,N

o
d

es
=

9

2
0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 9, multiple band pass) - avg fitness

F
ig

u
re

5
.1

1
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

9

2
1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 9, multiple band pass) - max fitness

F
ig

u
re

5
.1

2
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

R
L

C
,

N
o

d
es

=
9

2
2

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 10, multiple band pass) - avg fitness

F
ig

u
re

5
.1

3
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

0

2
3

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 10, multiple band pass) - max fitness

F
ig

u
re

5
.1

4
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

0

2
4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 10, multiple band pass) - avg fitness

F
ig

u
re

5
.1

5
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
0

2
5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 10, multiple band pass) - max fitness

F
ig

u
re

5
.1

6
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
0

2
6

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 11, multiple band pass) - avg fitness

F
ig

u
re

5
.1

7
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

1

2
7

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 11, multiple band pass) - max fitness

F
ig

u
re

5
.1

8
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

1

2
8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 11, multiple band pass) - avg fitness

F
ig

u
re

5
.1

9
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
1

2
9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 11, multiple band pass) - max fitness

F
ig

u
re

5
.2

0
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
1

3
0

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 12, multiple band pass) - avg fitness

F
ig

u
re

5
.2

1
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

2

3
1

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 12, multiple band pass) - max fitness

F
ig

u
re

5
.2

2
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

2

3
2

-1

-0.5

 0

 0.5

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 12, multiple band pass) - avg fitness

F
ig

u
re

5
.2

3
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
2

3
3

-1

-0.5

 0

 0.5

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 12, multiple band pass) - max fitness

F
ig

u
re

5
.2

4
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
2

3
4

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 13, multiple band pass) - avg fitness

F
ig

u
re

5
.2

5
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

3

3
5

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(unitor, nodes = 13, multiple band pass) - max fitness

F
ig

u
re

5
.2

6
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

U
n

ito
r,

N
o

d
es

=
1

3

3
6

-1

-0.5

 0

 0.5

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 13, multiple band pass) - avg fitness

F
ig

u
re

5
.2

7
:

A
v

era
g

e
F

itn
ess

o
f

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
3

3
7

-1

-0.5

 0

 0.5

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

(rlc, nodes = 13, multiple band pass) - max fitness

F
ig

u
re

5
.2

8
:

F
itn

ess
o

f
in

d
iv

id
u

a
l

w
ith

m
a

x
im

u
m

fi
tn

ess
in

th
e

p
o

p
u

la
tio

n
:

R
L

C
,N

o
d

es
=

1
3

38

Chapter 6

Discussion and further work

The most interesting observation for our discussion borders around the fact that the fitness land-

scape due to the crystallisation method is much smoother than that of the ”naive” method. The

fitness landscape picks up almost from the start, with no sharp fitness ”jumps”. This is in contrast

to the fitness plot of the ”naive” method, which takes a while to discover the right combina-

tion of devices to kick-start the hill-climb. Since the device arrangement of the ”naive” method

is very similar to that of traditional intrinsic Evolutionary Hardware efforts on transistor arrays

(Thompson, 1996), [layzell:2001], it would be tempting to argue that the ”search” method for the

right transistor configuration could be enhanced by incorporating the ”crystallisation” technique.

For example, Fig. 6.6 in [layzell:2001] shows almost zero fitness for a major portion of the am-

plifier runs before the right configuration to bias the transistor in the active is discovered. Since

transistor operation in the active region is a prerequisite for its operation as an amplifier, there

seems to be a direct correlation with the jump in fitness mentioned, and the discovery of the right

topology and circuit components required for this to happen. This provides a strong argument

that the crystallisation technique can be used to speed up discovering these configurations with

active devices.

Using the crystallisation method to transistor arrays is obviously impractical as an exclusively

intrinsic method since the circuits begin in a completely interconnected fashion at the point of

commencement of evolution. This would invariably result in dangerous configurations such as

forward biased gate-¿drain configurations which could destroy the device array. Consequently,

an extrinsic method, or a combination method would be the best way to investigate the crystalli-

sation method with active devices.

39

Chapter 7

Conclusion

XXX: Conclude the chapter here.

40

Bibliography

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA. 5, 6

Harvey, I. (1996). The microbial genetic algorithm. 5

Harvey, I. (2001). Artificial evolution: A continuing SAGA. Lecture Notes in Computer Science,

2217:94–?? 2

Kalganova, T. (2000). Bidirectional incremental evolution in extrinsic evolvable hardware. In

Lohn, J., Stoica, A., and Keymeulen, D., editors, Proceedings of the Second NASA/DoD Workshop

on Evolvable Hardware (EH2000), pages 65–74, Palo Alto, California, USA. 1

Koza, J. R., Bennett III, F. H., Andre, D., Keane, M. A., and Dunlap, F. (1997). Automated synthesis

of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary

Computation, 1(2):109–128. 1

Koza, J. R., Jones, L. W., Keane, M. A., and Streeter, M. J. (2004). Towards industrial strength

automated design of analog electrical circuits by means of genetic programming. In O’Reilly,

U.-M., Yu, T., Riolo, R. L., and Worzel, B., editors, Genetic Programming Theory and Practice II,

chapter 8, pages 120–?? Springer, Ann Arbor. pages missing? 2

Thompson, A. (1996). Silicon evolution. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo,

R. L., editors, Genetic Programming 1996: Proc. 1st Annual Conf. (GP96), pages 444–452. Cam-

bridge, MA: MIT Press. 38

Thompson, A. (1997). An evolved circuit, intrinsic in silicon, entwined with physics. In Higuchi,

T., Iwata, M., and Weixin, L., editors, Proc. 1st Int. Conf. on Evolvable Systems (ICES’96), volume

1259 of LNCS, pages 390–405. Springer-Verlag. 1

Torresen, J. (2002). A scalable approach to evolvable hardware. Genetic Programming and Evolvable

Machines, 3(3):259–282. 1

Zebulum, R. S., Pacheco, M. A., and Vellasco, M. (1998). Comparison of different evolutionary

methodologies applied to electronic filter design. In Proceedings of the 1998 IEEE World Congress

on Computational Intelligence, pages 434–439, Anchorage, Alaska, USA. IEEE Press. 2, 7

41

Appendix A

Code

10 PRINT "HELLO WORLD"

	Contents
	Introduction
	Background and Motivation
	Methodology
	Approach
	Topology
	Circuit Elements

	Implementation
	The Genetic Algorithm - Microbial GA
	Gene encoding
	The netlist generator
	The SPICE simulator driver
	The fitness function
	Transfer function correlation
	Unitor properties
	Parsimony

	Benchmarking

	Results
	Discussion and further work
	Conclusion
	Bibliography
	Code

